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Criticality and transient chaos in a sandpile model
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We numerically investigate a coupled map lattice model which is a generalization of the critical height
sandpile automaton. In the case of periodic boundary conditions we find in dependence on a threshold param-
eter strong evidence for a second order phase transition between states of different spatial order. In the
disordered phase the spatial structure is irregular with long range linearly decaying correlations. In the ordered
phase dynamics is dominated by a few coexisting periodic attractors whose basins of attraction become
infinitely small at the critical point. At this point transient lengths diverge and the transients are chaotic. With
open boundary conditions the system exhibits self-organized criticality, i.e., adjusts itself to the vicinity of this

critical point.

PACS number(s): 05.45.+b, 05.40.+j, 64.60.Ht

The formation of scale invariant spatial and temporal
structures, i.e., spatial fractals and 1/f type noise, is one of
the characteristic features of spatially extended nonlinear dy-
namical systems. A general explanation for these common
phenomena is not known yet. But at least some of these
phenomena may be explained by the concept of self-
organized criticality (SOC) [1]. Systems showing SOC orga-
nize themselves into a stationary state which is characterized
by scale invariant spatial and temporal correlations. Typi-
cally, their time series have an intermittencylike form with
bursts having power law distributions of sizes. Examples of
self-organized critical phenomena are the dynamics of ava-
lanches on sandpiles under appropriate conditions [2] and on
sandpile models [1,3,4], the domain wall growth in magnets
[5], earthquakes [6,7], the fragmenting of solid matter [8],
and pinned charge-density waves [9].

Our present understanding of SOC is drawn largely from
numerical simulations on discrete space-time lattice models,
especially cellular automata modeling sandpiles. The main
ingredients of these so-called sandpile automata are thresh-
old dynamics, a short range coupling, a local conservation
rule, and a slow driving by an external perturbation. The
dynamics of these models can be regarded as a discrete ver-
sion of a driven diffusion equation of a potential E (x,t)

oE
= T VIEE)=n(x0 M

where j(E(x)) is the transport current and #(x,?) is a sto-
chastic driving term [10]. j(E(x))is a nonlinear function due
to the local threshold dynamics. In order to understand the
dynamical behavior of these systems analogies have been
drawn to the theory of critical phenomena. Statistical tech-
niques such as scaling theory or renormalization group meth-
ods are used to compute critical exponents and to explore
universal properties [3,11,12].

A different approach to characterize the self-organized
critical state is provided by the concepts of nonlinear dynam-
ics. With these concepts it is possible to analyze the state
space structure of the systems and to get a more detailed
knowledge of the nature of the critical state as an attractor of
the dynamics. Investigations of deterministic sandpile mod-
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els [13,14], of effective Lyapunov exponents in an earth-
quake model [7], and of the spatiotemporal dynamics of
Bloch walls [15] are examples in which such concepts are
used.

In this paper we introduce a coupled map lattice model
which is a generalization of the critical height sandpile au-
tomaton model (CHM) [4] and investigate its dependence
upon certain system parameters and boundary conditions
(BC’s). For open BC’s the system shows the properties we
expect for the universality class of the CHM [11]. For peri-
odic BC’s there is a strong numerical evidence for a second
order phase transition which takes place between states of
different spatial order. We examine the dynamics and the
spatial structure of the two phases. Analyzing the dynamical
structure in the state space of the system we find a correla-
tion between the phase transitition and the size of basins of
attraction of some periodic attractors which are dominating
the dynamics in the ordered phase. At the critical point tran-
sient lengths diverge and the transient dynamics turns out to
be chaotic.

Our model is discrete in space and time but has an asso-
ciated field quantity E(x,¢) which is continuous and to which
we refer as a potential. It represents physical quantities such
as the height of a sandpile, mechanical stress, etc. For sim-
plicity of the notation of lattice sites we introduce a one-
dimensional variable i which can be yielded through a map-
ping of the d-dimensional vector x onto one dimension. We
represent the dynamics of the system by the equation

1 N
E(t+1)=E(1)+ 5 21 J;E (1) (tanh{g[E;(£) —E ]} +1)
b=

+n(i,0), 2)

where N is the number of cells, E;, is a threshold parameter,
J;j is the coupling matrice, 7(i,t) is a stochastic driving
term, and g is a nonlinearity parameter. The explicit form of
the tanh function is chosen to approximate the Heaviside step
function which is used in the sandpile automaton models in
the limit of g—o. The elements of the coupling matrice
J;; are real and constant. J;; describes the redistribution of
E; to site i when E;=Ey,.
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We focus on the dependence of the model upon the local
threshold E,. The influence of the other parameters will be
reported in a forthcoming paper [16]. Our simulations of Eq.
(2) are carried out on a two-dimensional lattice of size
N=LXL. We consider only an isotropic next neighbor cou-
pling and assume that the redistribution process is conserva-
tive, i.e., Ef; Jij=0, apart from the border of the system
where conservation can be violated depending on BC’s. Thus
the elements of the coupling matrix are set to

Jiy=-1,

(j' € next neighbors).

Bl o=

Jjri=

The nonlinearity parameter is held constant at g=1000.
With this value the behavior of the system is expected to be
very close to that in the limit g—oo. For open BC’s Pietron-
ero et al. have shown that in this asymptotic case the system
belongs to the universality class of the CHM [11]. To con-
firm this we have carried out simulations of Eq. (2) with
open BC’s. The system is driven by a stochastic perturbation
acting whenever the system has reached a stable configura-
tion. Thus no interactions between different avalanches take
place and the dynamics of an avalanche is governed only by
the deterministic part of Eq. (2). After suffiently long tran-
sients the system moves into a stationary state with power
law distributions of the sizes and the durations of avalanches.
The critical exponents 7 and & for the distribution of sizes
D(s)~s~" and the distribution of durations D(¢)~t" % are
7=1.25+0.03 and §=1.28+0.02 where the size s of an
avalanche with duration ¢ is defined as

t N
s= 2 21 [E(t")—E(t'—1)]%
t'=0 1=

Indeed these results are consistent with the calculations in
[17] and the numerical estimates in [4]. Furthermore, we
have calculated the critical ratio p=(E)/Ey, of the average
potential per site (E) and the threshold E,. The theoretical
value of p~0.62 [17] is universal for the class of the CHM
due to the invariance of Eq. (2) under the transformation
E,—E!=E;/E; [18]. For L—o we find a ratio
p=0.63%0.02 which agrees well with the theoretical value.

For periodic BC’s we find a different behavior of the sys-
tem. First the driving mechanism should be reconsidered be-
cause now the system cannot dissipate energy. If the same
driving mechanism is used as for open BC’s, the total energy
of the system E, will tend to increase, i.e., the system be-
comes nonstationary. But since the dynamics of avalanches
in the open system is not affected by the infinitely slow driv-
ing, we are only interested in the dynamics of the relaxation
process. Thus we investigate the periodic system without
driving. Then the total energy

N
E = z E(t)=N(E)=const
i=1

is a constant of motion. Therefore the dynamics takes place
on a finite (N—1)-dimensional hyperplane- in state space
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FIG. 1. Logarithmic plot of the average of transient lengths ¢,
computed on the basis of 10 000 runs for each value of Ey, .

which is spanned by N basis vectors corresponding to sites
of the lattice. It is finite because the value of E at each site is
limited to the interval [0,E ].

Without loss of generality we set (E)=3. We analyze the
transients and the final states of the system, starting from
randomly chosen initial states on the hyperplane defined by
(E). For all E, we find a large number of coexisting attrac-
tors. We compute an entropy H which we define as

H(Ey,L)= —El s, lnpsi+21 ps, InT;
i= i=

pe(S;,t)Inpg(S;,t)dE,

v psi T;
i=1

i t=1
3

where v=wv(L) is the number of attractors in the system
[19]. Ps(Ew) is the probability of finding an attractor S;
with period T; and pg(S;,t) is the probability of a site to be
in the state £ of an attractor S; at time ¢. The first term of Eq.
(3) represents the complexity due to coexisting attractors, the
second term stems from the periodicity of the attractors, and
the third term represents the entropy of the spatial configu-
ration averaged over one period. For varying thresholds E
and system sizes L we find that the function is continuous
and that at E,=Ej~4.5 the slope of H(E,,,L) becomes
very large. We interpret this result as an indication of a sec-
ond order phase transition.

For E,<E} the attractors are coexisting stable fixed
points and periodic states. The related spatial structures of
these attractors are regular patterns, e.g., the most dominant
attractor to which we refer as S; shows a checkered pattern
alternating between E=0 and E =2(E). Thus the subcritical
regime can be identified with the ordered phase. With grow-
ing parameter E;, new attractors appear and previously stable
ones become unstable. The temporal and spatial behavior of
the attractors becomes more complex but still is regular, e.g.,
there are standing waves, running waves, or running pulses.
Near the critical point the most dominant attractor is a single
plane running wave moving on the checkered pattern of S,
as background. We call this attractor S, .

Figure 1 shows the average transient lengths computed for
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FIG. 2. Joint probability distribution Y and probabilities P of
the two most dominant attractors S; and S, which account for the
details in the structure of Y.

uniform randomly chosen initial conditions. At E,=E the
average transient lengths as well as the variance diverge, so
that most of the final states cannot be seen even for relatively
small lattice sizes. To understand this we examine the prob-
ability Y that two random initial conditions end upon the
same attractor [20]. Y is defined by Y=2,(p si)z- IfY—O as

L — oo this means that all basins of attraction become infi-
nitely small. On the contrary, if Y remains finite there are a
few big basins which fill almost the whole of state space. In
Fig. 2 we have plotted Y extrapolated for 1/L —0. It can be
seen that Y vanishes at the critical point. We have also plot-
ted the probabilities p for the attractors S; and S,. The two
distributions account for the details in the structure of Y.
These results show that the basins of attraction vanish at the
critical point although a stability analysis shows that there
still are stable attractors.

Because the attractor S, is dominating the dynamics in the
subcritical regime we define the order parameter 7 in anal-
ogy to antiferromagnets as

NEw,L)= E E

i=1

, “4)

(l)E,

where f(i) defines the sign of the summands which corre-
sponds to a two-dimensional checkered pattern. Indeed 7
vanishes near the critical point and is zero for Ey>E .
Since transient lengths diverge near E;; , however, the scal-
ing of n could not be determined numerically. Nevertheless
we regard these results as strong numerical evidence of a
second order phase transition. Carlson and co-workers found
that in the unpertubated, periodic case self-organized critical
systems obey a diffusion equation which has a singularity in
the diffusion coefficient [12]. The driven, open system con-
verges to this critical point as the size L diverges. In our
model with periodic BC’s the critical ratio p has a value of
p=0.67+0.01, independent of (E). This ratio agrees re-
markably well with that for open BC’s. Therefore we regard
the observed phase transition as the source of the diffusion
singularity in our model.
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FIG. 3. Normalized Lyapunov spectra for two system sizes with
N=LXL.

Above the critical point transients become shorter again
(see Fig. 1). In most of the final states there are fixed points
with E at all sites below the threshold E . Their spatial
structures are strongly irregular, hence the supercritical re-
gime is the disordered phase of the system. We have ana-
lyzed the equal-time spatial correlation function
G(r)=((E;—(E))(E;—(E))) of the fixed points for varying
system sizes L and thresholds E,. r=L~|x;—x] is the nor-
malized distance of cells i and j on the two-dimensional
lattice. The normalized correlation function G'(7)
=G(r)/G(r=0) is independent of L and decays linearly.
We have also computed spatial correlations with the energies
E; randomly redistributed on the lattice. In this case no cor-
relations have been found. This result can be interpreted as a
hint that the spatial structure in the supercritical regime is
governed by a deterministic rule similar to the case reported
in [15].

Because transients become very long near the critical
point we have studied the dynamics of transient states. At the
critical point we find that the largest Lyapunov exponents
are positive with values of (2.5%0.5)X10" % and
(1.7£0.5)X 1072, The Lyapunov exponents are calculated
by means of QR decomposition [21], i.e., the decomposition
of the Jacobian matrix of the deterministic part in Eq. (2)
into an orthogonal matrix Q and an upper triangular matrix
R, and singular value decomposition [23], respectively. The
Lyapunov spectra [22] plotted for an index normalized by N
are shown in Fig. 3. They are invariant at least up to system
sizes of L =20. This indicates that transient dynamics is gov-
erned by a chaotic repeller [25].

As long as avalanches do not reach the boundary, the
dynamics of avalanches in the open system also takes place
on a plane of constant energy in state space. This plane is
defined by the actual total energy of the system. We therefore
expect that the invariant sets in state space which dominate
the relaxation dynamics in the system with periodic BC’s are
also relevant for the avalanche dynamics. To prove this we
compare the short time dynamics of avalanches in the open
system with that of transients in the periodic case. The analy-
sis is done by means of effective Lyapunov exponents

Aeif(?) which are a measure for the divergence rate of ini-
tially adjacent trajectories for finite times z. Their distribu-
tion in state space is related to the stable manifolds of the
invariant sets [24]. Figure 4 shows the distributions of the
largest A ¢ for different times ¢ and different BC’s. For both
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FIG. 4. Frequency distribution of effective Lyapunov exponents
Neg(?) for three different times in the open (full line) and in the
periodic case (broken line). For open BC’s A () has been com-
puted for points in state space belonging to avalanches, whereas for
periodic BC’s only transient states have been considered.

systems the size is L=10 and the threshold E is set to
4.5. For the periodic system (E) is set to 2.55 which is equal
to the average energy per site in the stationary state of the
corresponding open system. It is clearly visible that for short
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times both distributions are highly correlated. For longer
times there are deviations which are likely due to the influ-
ence of the BC’s.

In summary, we have shown that a coupled map lattice
model belonging to the universality class of the CHM reveals
a second order phase transition in dependence on the local
threshold and under the condition of periodic BC’s. At the
critical point dynamics is dominated by a chaotic repeller
and transient lengths diverge. For open BC’s the system self-
organizes to the vicinity of this critical point. The analysis of
the dynamics of avalanches on short time scales suggests that
the avalanches can be understood as chaotic transitions be-
tween metastable states. Therefore we believe that the occur-
rence of SOC, at least in this model, is related to the struc-
ture of invariant sets in state space. Basically this
phenomenon may be similar to the occurrence of 1/f noise in
the case of anomalous diffusion [26] where scaling is caused
by the fractal properties of a chaotic transport process.
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